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Abstract: Most of the research activities in association rule 
mining focuses on defining efficient algorithms for item set 
extraction. To reduce the computational complexity of item set 
extraction, support constraint is enforced on the extracted item 
sets.The IMine index structure can be efficiently exploited by 
different item set extraction algorithms. This paper presents the 
IMine index, a general and compact structure which provides 
tight integration of item set extraction in a relational DBMS. 
Since no constraint is enforced during the index creation phase, 
IMine provides a complete representation of the original 
database. To reduce the I/O cost, data accessed together during 
the same extraction phase are clustered on the same disk block. 
The IMine index has been integrated into the PostgreSQL 
DBMS and exploits its physical level access methods. 
Experiments, run for both sparse and dense data distributions, 
show the efficiency of the proposed index and its linear 
scalability also for large data sets. Item set mining supported by 
the IMine index shows performance always comparable with, 
and often (especially for lowsupports) better than, state-of-the-
art algorithms accessing data on flat file. 
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1. INTRODUCTION 
ASSOCIATION rule mining discovers correlations among 
data items in a transactional database D. Each transaction in 
D is a set of data items. Association rules are usually 
represented in the form A ! B, where A and B are item sets, 
i.e., sets of data items. Item sets are characterized by their 
frequency of occurrence in D, which is called support. 
Research activity usually focuses on defining efficient 
algorithms for item set extraction, which represents the most 
computationally intensive knowledge extraction task in 
association rule mining [1]. The data to be analyzed is 
usually stored into binary files, possibly extracted from a 
DBMS. The proposed work presents an incremental update 
strategy to work on the dynamic transaction of DMBS for 
efficient item set extraction. Since no support threshold is 
enforced during the index creation phase, the incremental 
update is feasible without accessing the original transactional 
database. The index performance in terms of incremental 
updates is experimentally evaluated with data sets 
characterized by different size and data distribution. The 
execution time of frequent item set extraction based on 
incremental update strategy of IMine is better than the state-
of-the-art algorithm i.e., existing IMine algorithm without 
update strategy. The experimental result shows the scalability 
of incremental update strategy for more frequent database 
updates characterized by a large number of transactions and 
with different pattern lengths. Most algorithms [1], [2], [3], 
[4], [5], [6] exploit ad hoc main memory data structures to 
efficiently extract item sets from a flat file. Recently, disk-
based extraction algorithms have been proposed to support 

the extraction from large data sets [7], [8], [9], but still 
dealing with data stored in flat files. To reduce the 
computational cost of item set extraction, different 
constraints may be enforced [10], [11], [12], [13], among 
which the most simple is the support constraint, which 
enforces a threshold on the minimum support of the extracted 
item sets. 
     Relational DBMSs exploit indices, which are ad hoc data 
structures, to enhance query performance and support the 
execution of complex queries. In this paper, we propose a 
similar approach to support data mining queries. The Imine 
index (Item set-Mine index) is a novel data structure that 
provides a compact and complete representation of 
transactional data supporting efficient item set extraction 
from a relational DBMS. It is characterized by the following 
properties: 
1. It is a covering index. No constraint (e.g., support 
constraint) is enforced during the index creation phase. 
Hence, the extraction can be performed by means of the 
index alone, without accessing the original database. The 
data representation is complete and allows reusing the index 
for mining item sets with any support threshold. 
2. The IMine index is a general structure which can be 
efficiently exploited by various item set extraction 
algorithms. These algorithms can be characterized by 
different in-memory data representations (e.g., array list, 
prefix-tree) and techniques for visiting the search space. Data 
access functions have been devised for efficiently loading in 
memory the index data. Once in memory, data is available for 
item set extraction by means of the algorithm of choice. We 
implemented and experimentally evaluated the integration of 
the IMine index in FP-growth [3] and LCM v.2 [14]. 
Furthermore, the IMine index also supports the enforcement 
of various constraint categories [15]. 
3. The IMine physical organization supports efficient data 
access during item set extraction. Correlation analysis allows 
us to discover data accessed together during pattern 
extraction. To minimize the number of physical data blocks 
read during the mining process, correlated information is 
stored in the same block. 
4. IMine supports item set extraction in large data sets. We 
exploit a direct writing technique to avoid representing in 
memory the entire large data set. Direct materialization has a 
limited impact on the final index size because it is applied 
only on a reduced portion of the data set (the less frequent 
part). 
The IMine index has been implemented into the PostgreSQL 
open source DBMS [16]. Index data are accessed through 
PostgreSQL physical level access methods. The index 
performance has been evaluated by means of a wide range of 
experiments with data sets characterized by different size and 
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data distribution. The execution time of frequent item set 
extraction based on IMine is always comparable with, and 
often (especially for low supports) faster than, the state-of-
the-art algorithms (e.g., Prefix-Tree [17] and LCM v.2 [14]) 
accessing data on flat file. Furthermore, the experimental 
results show the linear scalability of both IMine-based 
algorithms also for data sets characterized by a large number 
of transactions and different pattern length. 

 
Fig. 1. Example data set. 

 
This paper is organized as follows: Section 2 thoroughly 
describes the IMine index by addressing its structure, its data 
access methods, and its physical layout. Section 3 describes 
how the FP-growth and LCM v.2 algorithms may exploit 
IMine to perform efficiently the extraction of item sets. It 
also describes how the IMine index supports the enforcement 
of various constraint types.  
 

2. THE IMINE INDEX 
The transactional data set D is represented, in the relational 
model, as a relation R. Each tuple in R is a pair 
(TransactionID, ItemID). The IMine index provides a 
compact and complete representation of R. Hence, it allows 
the efficient extraction of item sets from R, possibly 
enforcing support or other constraints. In Section 2.1, we 
present the general structure of the IMine index; while in 
Section 2.2, we discuss how data access takes place. The 
physical organization of the index is presented in Section 2.3 
together with a discussion of access cost. Finally, Section 2.4 
discusses some optimizations for the physical storage of large 
sparse data sets. 
2.1 IMine Index Structure 
The structure of the IMine index is characterized by two 
components: the Item set-Tree and the Item-Btree. The two 
components provide two levels of indexing. The Item set-
Tree (I-Tree) is a prefix-tree which represents relation R by 
means of a succinct and lossless compact structure. The Item-
Btree (I-Btree) is a B+Tree structure which allows reading 
selected I-Tree portions during the extraction task. For each 
item, it stores the physical locations of all item occurrences in 
the I-Tree. Thus, it supports efficiently loading from the I-
Tree the transactions in R including the item. In the 
following, we describe in more detail the I-Tree and the I-
Btree structures. I-Tree An effective way to compactly store 
transactional records is to use a prefix-tree. Trees and prefix-
trees have been frequently used in data mining and data 
warehousing indices, including cube forest [18], FP-tree [3], 
H-tree [19], Inverted Matrix [7], and Patricia-Tries [20]. Our 
current implementation of the I-Tree is based on the FP-tree 
data structure [3], which is very effective in providing a 
compact and lossless representation of relation R. However, 
since the two index components are designed to be 

independent, alternative I-Tree data structures can be easily 
integrated in the IMine index. The I-Tree associated to 
relation R is actually a forest of prefix-trees, where each tree 
represents a group of transactions all sharing one or more 
items. Each node in the I-Tree corresponds to an item in R. 
Each path in the I-Tree is an ordered sequence of nodes and 
represents one or more transactions in R. Each item in 
relation R is associated to one or more I-Tree nodes and each 
transaction in R is represented by a unique I-Tree path.   
     Fig. 1 reports (in a more succinct form than its actual 
relational representation) a small data set used as a running 
example, and Fig. 2 shows the complete structure of the  
corresponding IMine index. In the I-Tree paths (Fig. 2a), 
nodes are sorted by decreasing support of the corresponding 
items. In the case of items with the same support, nodes are 
sorted by item lexicographical order. In the I-Tree, the 
common prefix of two transactions is represented by a single 
path. For instance, consider transactions 3, 4, and 9 in the 
example data set. These transactions, once sorted as 
described above, share the common prefix [e:3,h:3], which is 
a single path in the I-Tree. Node [h:3] is the root of two 
subpaths, representing the remaining items in the considered 
transactions. Each I- Tree node is associated with a node 
support value, representing the number of transactions which 
contain (without any different interleaved item) all the items 
in the subpath reaching the node. For example, in subpath 
[e:3, h:3], the support of node [h:3] is 3. Hence, this subpath 
represents three transactions (i.e., transactions 3, 4, and 9) 
 

 
Fig. 2. IMine index for the example data set. (a) I-Tree. (b) I-
Btree. 
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       An arbitrary node (e.g., [p:3] in the example I-Tree in 
Fig. 2a) includes the following links: 1) Parent pointer 
(continuous edge linking node [p:3] to node [d:5]). 2) First 
child pointer (dashed edge linking node [p:3] to node [g:2]). 
first brother node inserted in the I-Tree after the current node. 
These pointers allow both bottom-up and top-down tree 
traversal, thus enabling item set extraction with various types 
of constraints (see Section 3). 
     The I-Tree is stored in the relational table TI_Tree, which 
contains one record for each I-Tree node. Each record 
contains node identifier, item identifier, node support, and 
pointers to the parent, first child, and right brother nodes. 
Each pointer stores the physical location (block number and 
offset within the block) of the record in table TI_Tree 
representing the corresponding node. 
I-Btree 
The I-Btree allows selectively accessing the I-Tree disk 
blocks during the extraction process. It is based on a B+Tree 
structure [21]. Fig. 2b shows the I-Btree for the example data 
set and a portion of the pointed I-Tree. For each item i in 
relation R, there is one entry in the I-Btree. In particular, the 
I-Btree leaf associated to i contains i’s item support and 
pointers to all nodes in the I-Tree associated to item i. Each 
pointer stores the physical location of the record in table 
TI_Tree storing the node. Fig. 2b shows the pointers to the I-
Tree nodes associated to item r. 
 
2.2 IMine Physical Organization 
The physical organization of the IMine index is designed to 
minimize the cost of reading the data needed for the current 
extraction process. The I-Btree allows a selective access to 
the I-Tree paths of interest. Hence, the I/O cost is mainly 
given by the number of disk blocks read to load the required 
I-Tree paths.  
When visiting the I-Tree, nodes are read from table TI_Tree 
by using their exact physical location. However, fetching a 
given record requires loading the entire disk block where the 
record is stored. On the other hand, once the block is in the 
DBMS buffer cache, reading the other nodes in the block 
does not entail additional I/O cost. Hence, to reduce the I/O 
cost, correlated index parts, i.e., parts that are accessed 
together during the extraction task, should be clustered into 
the same disk block. The I-Tree physical organization is 
based on the following correlation types: 
2.2.1 I-Tree Layers 
The I-Tree is partitioned in three layers based on the node 
access frequency during the extraction processes. The 
frequency in accessing a node (and thus the subpath 
including it) depends on the interaction of three factors: 1) 
the node level in the I-Tree, i.e., its distance from the root, 
2) the number of paths including it, represented by the node 
support, and 3) the support of its item. When an item has 
very low support, it will be very rarely accessed, because it 
will be uninteresting for most support thresholds. Nodes 
located in lower levels of the I-Tree are associated to items 
with low support. The three layers are shown in Fig. 2a for 
the example I-Tree. 

Top layer. This layer includes nodes that are very frequently 
accessed during the mining process. These nodes are located 
in the upper levels of the I-Tree. They correspond to items 
with high support, which are distributed over few nodes with 
high node support. Items are chosen in the same order they 
are entered in the I-Tree paths. The nodes containing the 
selected items are all stored in the Top layer. 
Middle layer. This layer includes nodes that are quite 
frequently accessed during the mining process. These nodes 
are typically located in the central part of the tree. They 
correspond to items with relatively high support, but not yet 
dispersed on a large number of nodes with very low node 
support. We include in the Middle layer nodes with (node) 
support larger than 1. Unitary support nodes are rather rarely 
accessed and should be excluded from the Middle layer. 
Bottom layer. This layer includes the nodes corresponding 
to rather low support items, which are rarely accessed during 
the mining process. Nodes in this layer are analyzed only 
when mining frequent item sets for very low support 
thresholds. The Bottom layer is characterized by a huge 
number of paths which are (possibly long) chains of nodes 
with unitary support. These subpaths represent (a portion of) 
a single transaction and are thus read only few times. A large 
number of low support items is included in this layer. 
2.2.2  I-Tree Path Correlation 
Correlation among the subpaths within each layer is analyzed 
to optimize the index storage on disk. Two paths 
are correlated when a given percentage of items is common 
to both paths. Searching for optimal correlation is 
computationally expensive since all pairs of paths should be 
checked. As an alternative, we propose a heuristic technique 
to detect correlation with reduced computation cost. The 
technique is based on an “asymmetric” definition of 
correlation. A reference path, named pivot, is selected. Then, 
correlation of the other paths with the pivot is analyzed. The 
pivot and its correlated paths are stored in the same disk 
block. 
     Since each node may be shared by many paths, 
redundancy in storing the paths might be introduced. To 
prevent this effect, paths are partitioned in nonoverlapped 
parts, named tracks. Each node (even if shared among several 
paths) belongs to a single track. Correlation between track 
pairs is then analyzed.  
     Tracks are computed separately in each layer. Each layer 
is bound by two borders, named upper and lower border, 
which contain, respectively, the root and the tail nodes for the 
subpaths in the layer. For a given layer, track computation 
starts from nodes in its lower border. Each node in the 
(lower) border is the tail node of a different track. Nodes are 
considered based on their order into the lower border. For 
each tail node, its prefix-path is visited bottom-up. The visit 
ends when a node already included in a previously computed 
track or included in the upper border of the layer is reached. 
All visited nodes are assigned to the new track. The 
pseudocode for track computation is provided in Appendix 
A, which can be found on the Computer Society Digital 
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Library at http://doi.ieee computersociety .org/10.1109/ 
TKDE. 2008. 180.  
     As an example, Fig. 2a shows how paths in the Top and 
Middle layers are partitioned in tracks (tracks are represented 
as dashed boxes). The top layer upper border 
contains nodes [b:10], [a:3], [e:3] (which correspond to the I-
Tree roots) and the lower border includes nodes [d:5], [a:2], 
[i:3], [i:2], [a:1]. Track computation starts by considering 
node [d:5]. Its prefix-path [d:5, h:7, e:7, b:10] is a track. 
After considering node [a:2], the prefix path of node [i:3] is 
visited until node [b:10] is reached. Since [b:10] belongs to 
the previously computed track, the new track will only 
include subpath [i:3, a:3].  
     After each layer is partitioned in tracks, correlation 
analysis between track pairs may take place. The longest 
track that can be completely stored in the block is selected as 
pivot. Then, correlation between the remaining tracks and the 
pivot is computed. Only tracks that can completely fit in the 
remaining space in the block are considered, in decreasing 
length (i.e., number of nodes in the track) order. Tracks 
correlated to the pivot are stored in the same disk block. 
When no more tracks can be stored in the block or no 
remaining track is correlated with the current pivot, a new 
block and a new pivot are selected. 
      

3. ITEM SET MINING 
     Several algorithms have been proposed for item set 
extraction. These algorithms are different mainly in the 
adopted main memory data structures and in the strategy to 
visit the search space. The IMine index can support all these 
different extraction strategies. Since the IMine index is a disk 
resident data structure, the process is structured in two 
sequential steps: 1) the needed index data is loaded and 2) 
item set extraction takes place on loaded data. The data 
access methods presented in Section 2.2 allow effectively 
loading the data needed for the current extraction phase. 
Once data are in memory, the appropriate algorithm for item 
set extraction can be applied. In Section 3.1, frequent item set 
extraction by means of two representative state-ofthe- art 
approaches, i.e., FP-growth [3] and LCM v.2 [14], is 
described. Section 3.2 discusses how the IMine index 
supports constraint enforcement. 
Enforcing Constraints 
Constraint specification allows the (human) analyst to better 
focus on interesting item sets for the considered analysis task. 
A significant research effort [10], [11], [12], [15], [13] has 
been devoted to the exploration of techniques to push 
constraint enforcement into the extraction process, thus 
allowing an early pruning of the search space and a more 
efficient extraction process. Constraints have been classified 
as antimonotonic, monotonic, succinct, and convertible [15]. 
These latter constraints (e.g., avg, sum) are neither 
antimonotonic nor monotonic, but they can be converted into 
monotonic or antimonotonic by an appropriate item ordering. 
     Constraint enforcement into the FP-growth algorithm is 
discussed in [15]. This approach can be straightforwardly 
supported by the IMine index. More specifically, the items 

of interest are selected by accessing the I-Btree. Once data 
are in memory, the _-projected database is built by including 
all items which follow _ in the item ordering required by 
constraint enforcement. Different constraint classes may 
require different item orderings, which enable early pruning 
for the considered constraint class. For example, for 
convertible constraints, the ordering exploited to convert the 
constraint is enforced. The   appropriate extraction algorithm 
performs the extraction by recursive projections of the _-
projected database. Constraints are enforced during the 
iteration steps. 

TABLE 1 
Data Set Characteristics and Corresponding Indices 

 
 

4. EXPERIMENTAL RESULT 
We validated our approach by means of a large set of 
experiments  addressing the following issues: 
 
1. Performance of the IMine index creation, in terms of       
    both creation time and index size, 
2. Performance of frequent item set extraction, in terms of                           
   Execution time, memory usage, and I/O access time, 2 
3. Effect of the DBMS buffer cache size on hit rate, 3 
4. Effect of the index layered organization, 
5. Effect of direct writing, and 
6. Scalability of the approach. 
 
We ran the experiments for both dense and sparse data 
distributions. We report experiments on six representative 
data sets whose characteristics (i.e., transaction and item 
cardinality, average transaction size (AvgTrSz), and data set 
size) are in Table 1. Connect and Pumsb [22] are dense and 
medium-size data sets. Kosarak [22] is a large and sparse 
data set including click-stream data. T10I200P20D2M is a 
dense and large synthetic data set, while T15I100P20C1D5M 
and T20I100P15C1D7M are quite sparse and large synthetic 
data sets. Synthetic data sets are generated by means of the 
IBM generator [23]. For all data sets, the index has been 
generated without enforcing any support threshold. 
     Both the index creation procedure and the item set 
extraction algorithms are coded into the PostgreSQL v. 7.3.4 
open source DBMS [16]. They have been developed in ANSI 
C. Experiments have been performed on a 2,800-MHz 
Pentium IV PC with 2-Gbyte main memory running Linux 
kernel v. 2.7.81. The buffer cache of the PostgreSQL DBMS 
has been set to the default size of 64 blocks (block size is 8 
Kbytes). All reported execution times are real times, 
including both system and user time, and obtained from the 
Unix time command as in [22]. 
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5. CONCLUSIONS AND FUTURE WORK 
The IMine index is a novel index structure that supports 
efficient item set mining into a relational DBMS. It has been 
implemented into the PostgreSQL open source DBMS, by 
exploiting its physical level access methods. The IMine index 
provides a complete and compact representation of 
transactional data. It is a general structure that efficiently 
supports different algorithmic approaches to item set 
extraction. Selective access of the physical index blocks 
significantly reduces the I/O costs and efficiently exploits 
DBMS buffer management strategies. This approach, albeit 
implemented into a relational DBMS, yields performance 
better than the state-of-the-art algorithms (i.e., Prefix-Tree 
[17] and LCM v.2 [14]) accessing data on a flat file and is 
characterized by a linear scalability also for large data sets. 
     As further extensions of this work, the following issues 
may be addressed: 1) Compact structures suitable for 
different data distributions. Currently, we adopt the prefix-
tree structure to represent any transactional database 
independently of its data distribution. Different techniques 
may be adopted (e.g., [7]), possibly ad hoc for the local 
density of the considered data set portion. 2) Integration with 
a mining language. The proposed primitives may be 
integrated with a query language for specifying mining 
requests, thus contributing an efficient database 
implementation of the basic extraction statements. 3) 
Incremental update of the index. Currently, when the 
transactional database is updated, the IMine index needs to 
be rematerialized. A different approach would be to 
incrementally update the index when new data become 
available. Since no support threshold is enforced during the 
index creation phase, the incremental update is feasible 
without accessing the original transactional database. 
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